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Abstract

The attenuation of acoustic waves with lined expansion chambers is presented. The

physical problems involve scattering and absorption of acoustic waves in waveg-

uide including single as well as double expansion chambers. The Mode Matching

technique is used to solve the governing boundary value problems. The technique

is based on the determination of eigenfunction expansions of duct regions through

separation of variable method. The matching of pressures and velocities modes

at interfaces help to reconstruct the differentiated system into linear algebraic

systems. These systems are truncated and solved numerically. To insight the

problems physically the transmission loss is plotted against frequency. It is found

that more attenuation with double lined expansion chambers and fibrous material

is obtained.
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Chapter 1

Introduction

Noise pollution is the biggest problem of modern era. It not only disrupts the

normal functioning of life but also affects the health of humans. The major effects

of noise on humans include: physiological effects, increase of blood pressure and

feeling of headache; psychological effects, stress and nervousness and social effects,

obstruction of communication and social segregation. The main sources of noise

are road traffic, airplanes, railways, construction sites and industrial areas. In

order to reduce the unwanted noise various noise control measures are used. For

example silencers like components are employed at the exhausts of automobiles.

The inside of these silencers involve various geometric designs and sound absorbing

materials that minimize the vibrational waves of exhaust engines and fans. More-

over for the noise of Heating, Ventilation and Air Conditioning (HVAC) systems

of building, different duct designs and sound proofing are used. The common com-

ponent in all is the duct like structures. It works like a channel which transports

vibrational energy from one point of the medium to another point. The investi-

gation on designs and materials properties of such ducts in order to minimize the

vibrational energy has gained much attention of researcher and engineers. The

current study is relevant to the propagation and attenuation of sound radiation

in a waveguide including single and double cavities or expansion chambers. The

material properties of bounding regions of chambers contain porous linings. Such

waveguides may have applications in HVAC and silencer designs.

1



Introduction 2

In this thesis the modeling of acoustic duct modes, their propagation, scattering

and absorption are discussed.

1.1 Background and Literature Survey

The word acoustic is as old as human history. In the 6th century BC, Pythagoras

gave the idea of musical sounds and vibrating strings. He found that conso-

nant musical intervals produced by the vibrating strings depend upon tension of

string. The Roman architect Vitruvius worked on the designs of acoustical the-

aters. Galileo discussed about the relationship of pitch of a vibrating string to its

length. Sauveur made complete study about the relationship of frequency to pitch.

The English mathematician Taylor formulated the fundamental mode solution to

investigate the vibration of string with reference to the frequency of propagating

mode. Bernoulli provided partial differential equation for the vibrating string and

obtained its solution through d’Alembert principle. Poisson discussed first time

the solution of vibrational membranes. Clebsch presented solution for vibrating

circular membranes. Chladni formulated the solution of vibrating plates.

In the 19th century, Tyndall observed that longitudinal vibration was produced

by rubbing a rod. He also formulated the effects of fog and water in various

weather conditions on the transmission of sound. Helmholtz improved the work of

Tyndall by working over the quality of musical sound and invented a vibrational

microscope. Stokes presented a three-dimensional equation of motion of a viscous

fluid which was known as Navier-Stokes equation. Bell invented a microphone.

Edison recorded first time human voice for posterity. Scheibler formed tonometer

which controlled the frequency in small steps. Koenig formed a tonometer which

controlled frequency ranging from 16Hz to 21845Hz. Koenig made cylindrical and

spherical Helmholtz resonators of different kinds.

In 20th century, Sabine, father of architectural acoustics, measured quantity of

sound in the room and made acoustical theaters. Rayleigh found a way to mea-

sure the intensity of a sound source. Knudsen and Harris improved the work of

Sabine by investigating the effects of molecular relaxation phenomena in gases
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and liquid. Bolt with the help of Beranek and Newman worked over the acoustical

building, halls, musical sheds and centers for performing art. Lighthill studied

about non-linear acoustics in fluid. Hamilton, Blackstock and Beyer investigated

the propagation of sound through liquids, gases or solids.

The present study is related to the propagation and scattering of acoustics waves

in rectangular waveguide or channel. The performance of acoustical waveguide

to reduce unwanted noise can be increased by using the noise absorbent material

and/or introducing the locally reactive liners.

The salient features of acoustics scattering in guiding structures that contain ex-

pansions and/or contractions in geometry have vital role in noise reduction ap-

plications. For example, expansion chambers are widely used to reduce unwanted

exhaust noise produced by internal combustion engines that travels through the

duct. The propagation of wave along the ducts with rapid changes in the cross

sectional area can produce reflections that reduce the energy of transmitted wave.

This is the method together with cavity resonance mechanisms by which silencer

box reduce noise in the car exhaust system [1].

Hassan and Rawlins [2], Rawlins [3, 4] and Ayub et al [5–7] discussed the propa-

gation of sound waves in cylinderical channel containing sound absorbing linings

along the walls of the channel. They used Wiener Hopf technique to analyze the

effects of absorbing material.

Recently Haung [8] and then Haung and Choy [9] investigated different aspects of

channels for distortion of fan noise in HVAC system. They used geometrical chan-

nels containing elastic membranes and employed Fourier integral based matching

approach for the solution of their problem. Lawrie [10] presented the class of or-

thogonality relations relevant to fluid-structure interaction. Haung [11] analyzed

drum like silencer and reflection of sound waves through chamber enclosed by ver-

tical plates.

More recently, in references [12–23] the Mode Matching technique have been used

and advanced for the problems of Sturm-Liouville systems and non Sturm Liou-

ville systems catagories.

The present work is geometrical extended form of the work done by Demir and
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Buyukaksoy [24]. They considered circular single expansion chamber whose walls

containing reacting linings of porous material. Here, we considered rectangu-

lar single and double expansion chambers in waveguides with different bounding

properties. The Mode Matching approach has been used to found the solution of

governing BVP.

The thesis is organized as follow:

In Chapter 1 the introduction and literature survey is presented. Chapter 2 con-

tains some basic definitions and terminologies. The mathematical formulation of

waveguides involving single expansion chamber is discussed in Chapter 3, whereas,

the analysis of waveguides with double expansion chambers are debated in Chapter

4. In Chapter 5 discussion and conclusion are presented.



Chapter 2

Preliminaries

2.1 Acoustics

Acoustics is an old discipline of science that deals with the study of sound. The

word acoustics is derived from a Greek letter “akouein”, which means “to hear”.

The word “acoustics” was first time used by Sauveur in 1701. But now it is a

branch of physics and covers many important disciplines like theoretical acoustics,

nonlinear acoustics, underwater acoustics, ultrasound, vibrations, noise control,

room acoustics, building acoustics, electric acoustics, and acoustics of the ear.

2.2 Acoustic Waves

Acoustic waves are the pressure fluctuations in a material medium which transfer

energy from one medium to another medium. This medium can be a compressible

fluid like gases(air) or liquid(water) or any other vibrating systems.

5
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2.3 Acoustic Wave Equation

In order to derive the acoustic wave equation in compressible fluid (air), we use

some basic laws, which are given as follows:

Conservation of mass: The conservation of mass is described by the partial

differential equation as:
∂ρ

∂t∗
+∇∗ · ρu∗ = 0, (2.1)

where ρ is density and u represents velocity vector.

Conservation of momentum: The conservation of momentum is described as:

ρ

(
∂u∗

∂t∗
+ (u∗ · ∇∗)u∗

)
= −∇∗p+ ρg∗, (2.2)

where p is acoustic pressure and g is gravitational acceleration.

Equation of state: The equation of state for acoustic wave equation is written

as:

p = βs, (2.3)

where β is bulk modulus and s represents condensation.

By using aforementioned laws, we can obtain linearized acoustic wave equation.

∇∗2p =
1

c2

∂2p

∂t∗2
, (2.4)

where

c2 =
β

ρ0

, u∗ = ∇∗Φ, p = −ρo
∂Φ

∂t∗
. (2.5)

We can write acoustic wave equation in terms of scalar field potential as:

∇∗2Φ =
1

c2

∂2Φ

∂t∗2
, (2.6)

where Φ represents field potential.

The equation (2.6) is used to discuss the wave propagation in fluids.
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2.4 Boundary Conditions

The following boundary conditions are defined to model the BVP:

1) Soft conditions.

2) Rigid conditions.

3) Impedance conditions.

2.4.1 Soft Conditions

The soft boundary conditions are Drichlet’s type boundary conditions. For this

condition, the pressure or displacement is assumed as zero, i.e.

φ(x, y) = 0. (2.7)

2.4.2 Rigid Conditions

The rigid boundary conditions are Neumann’s type boundary conditions. For this

condition, normal velocity is assumed as zero, i.e.

∂φ(x, y)

∂y
= 0. (2.8)

2.4.3 Impedance Conditions

The impedance boundary conditions are Robin’s type boundary conditions. Robin

boundary conditions are combination of Drichlet boundary conditions and Neu-

mann boundary conditions. This condition is written as:

a1φ(x, y) + a2
∂φ(x, y)

∂y
= 0, (2.9)

where a1 and a2 are arbitrary constants.
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2.5 Energy Flux

For fluid potential φ the energy flux may be defined by [25]:

Energy Flux =
1

2
Re

[
i

∫
Ω

φ

(
∂φ

∂n

)?
dΩ

]
, (2.10)

where n is normal to the given region and (?) is the complex conjugate.

To measure the performance of the dissipative silencer the transmission loss is

defined by[26]

TL = −10 log10

(
Ptr
Pinc

)
, (2.11)

where Ptr and Pinc show the transmitted power (out going energy flux) and incident

power (in coming incident energy flux ).



Chapter 3

Scattering in Waveguide

Involving Single Expansion

Chamber

In this chapter we consider the propagation and scattering of acoustic wave through

an expansion chamber including absorbing lining in a waveguide. The governing

boundary value problem (BVP) involve Helmholtz equation along with rigid and

impedance type boundary conditions. The Mode-Matching technique has been

used to solve the BVP. The mathematical formulation and solution procedure

is discussed comprehensively in next sections 3.1-3.4. The section wise detail is

given as follows: In section 3.1 the mathematical formulation of the boundary

value problem is given. In section 3.2 mode matching solution of the boundary

value problem is discussed. In section 3.3 the derivation of energy flux is given.

In section 3.4 the numerical results and discussion are provided.

9
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3.1 Mathematical Formulation

Consider a two dimensional waveguide stretched infinitely along x∗-direction and

contains finite height along y∗-direction, where asterisk here and henceforth de-

notes the dimensional quantity. Moreover, the waveguide comprises step-discontin

uities at x∗ = ±L∗ that divide the waveguide into ducts of different heights. Two

side ducts of same heights occupy the regions at | x∗ |> L∗, | y∗ |< a∗ and one

central region | x∗ |< L∗ and | y∗ |< b∗. The interior of the waveguide is filled

with compressible fluid of density ρ and sound speed c, whilst, the outer side is

in vacau. The horizontal boundaries of side regions at y∗ = ±a∗ are rigid whereas

the horizontal boundaries of central region contain absorbing lining. The vertical

boundaries at x∗ = ±L∗ can be of two different categories:

1) Rigid vertical strips.

2) Porous linings along the vertical strips.

The physical configuration of the waveguide for rigid vertical strips is shown in

Figure 3.1. Now let a harmonic time dependent plane acoustic wave propagat-

Figure 3.1: Geometry of the problem.

ing from negative x∗-direction towards | x∗ |6 L∗. At | x∗ |6 L∗, it will scatter

into infinite number of reflected and transmitted modes. The dimensional fluid

potential Φ∗(x∗, y∗, t∗) satisfy the linear acoustic wave equation,

∂2Φ∗

∂x∗2
+
∂2Φ∗

∂y∗2
=

1

c2

∂2Φ∗

∂t∗2
. (3.1)
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On taking the harmonic time dependence of e−iωt
∗
, where ω is the circular fre-

quency, the dimensional field potential can be written as:

Φ∗(x∗, y∗, t∗) = φ∗(x∗, y∗)e−iωt
∗
, (3.2)

where φ∗(x∗, y∗) is the time independent dimensional field potential. On using

(3.2) into (3.1) we get the Helmholtz equation

(
∂2

∂x∗2
+

∂2

∂y∗2
+ k2)φ∗(x∗, y∗) = 0, (3.3)

with k = ω/c the dimensional wave number. The dimensional length and time are

made dimensionless by using the transformations,

x = kx∗, y = ky∗ and t = ωt∗, (3.4)

where k−1 and ω−1 are assumed to contain length and time scale, respectively.

Therefore we may write
∂

∂x∗
= k

∂

∂x
, (3.5)

∂2

∂x∗2
= k2 ∂

2

∂x2
,

∂2

∂y∗2
= k2 ∂

2

∂y2
(3.6)

and

Φ∗(x∗, y∗) =
1

k2
φ(x, y). (3.7)

By using (3.6) and (3.7) into (3.3) we found the non-dimensional form of Helmholtz

equation

(
∂2

∂x2
+

∂2

∂y2
+ 1)φ(x, y) = 0, (3.8)

where φ(x, y) is the dimensionless form of fluid potential.

With reference to different duct regions, this field potential can be written as:

φ (x, y) =


φ1 (x, y) , x < −L, | y |< a,

φ2 (x, y) , | x |< L, y < b.

φ3 (x, y) , x > L, | y |< a.

(3.9)
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The dimensionless form of boundary conditions can be written as:

∂φ1

∂y
= 0, x < −L, y = ±a, (3.10)

φ2 ± iξ
∂φ2

∂y
= 0, | x |< L, y = ±b (3.11)

and
∂φ3

∂y
= 0, x > L, y = ±a. (3.12)

The boundaries along the vertical strips can be rigid or absorbing lining. The rigid

vertical boundaries (shown in Figure 3.1) are

∂φ2

∂x
= 0, y = ±L, a 6 x 6 b. (3.13)

The vertical absorbing lining boundaries (shown in Figure 3.2) are given by

φ2 ∓ iξ
∂φ2

∂x
= 0, y = ±L, a 6 x 6 b. (3.14)

In next section the boundary value problem is solved by using Mode-Matching

technique.

3.2 Mode Matching Solution

Here we find the Mode Matching solution of the boundary value problem formu-

lated in section 3.1. Consider a plane wave incident φinc which is a fundamental

duct mode of region x < −L, is propagating from negative x-direction towards

| x |6 L. The field potential φ1(x, y) in duct region x < −L is the sum of incident

and reflected fields, that is:

φ1(x, y) = φinc + φref , (3.15)
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here, φref is the infinite sum of reflected duct modes that is

φref =
∞∑
n=0

Anφ1n(x, y), (3.16)

where An, n = 0, 1, 2, ... are the amplitudes of reflected modes. To calculate the

nth reflected duct mode φ1n(x, y) , n = 0, 1, 2, ... we use the method of separation

of variables. For this let

φ1n(x, y) = X1n(x)Y1n(y). (3.17)

We use (3.17) into (3.8) to get

−
(
Y ′′1n
Y1n

+ 1

)
=
X ′′1n
X1n

= −η2
n. (3.18)

In above equation prime denotes the differentiation with respect to the variable

involved. Now on solving for X1n(x) and Y1n(y), we may find

X1n(x) = C1e
−iηn(x+L) + C2e

+iηn(x+L) (3.19)

and

Y1n(y) = C3 cos(τny) + C4 sin(τny), (3.20)

where ηn =
√

1− τ 2
n, n = 0, 1, 2, . . . are the wave number of propagating modes.

Note that X1n(x) determines the shape of nth mode propagating in R1 along x-

direction. The exponential term exp−iηn(x+L) in (3.19) indicates the nth mode

propagating towards negative x-direction while exp +iηn(x+L) show the nth mode

propagating towards positive x-direction. As the reflected nth mode propagates in

negative x-direction, so C2 = 0. Also applying the rigid boundary condition (3.10)

we found C4 = 0 and τn = nπ/2a, n = 0, 1, 2, .... Therefore, the reflected field can

be written as:

φref =
∞∑
n=0

An cos{nπ
2a

(y + a)}e−iηn(x+L). (3.21)
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On assuming the incident wave to be the fundamental duct mode, the field poten-

tial in region R1 can be written as

φ1 (x, y) = ei(x+L) +
∞∑
n=0

An cos{nπ
2a

(y + a)}e−iηn(x+L). (3.22)

Note that the first term in (3.22) stands for incident field which is a fundamental

duct mode n = 0 propagating towards positive x-direction, while the second term

is the reflected field. Similarly for region R2, the eigen expansion form of reflected

and transmitted duct mode are assumed as:

φ2(x, y) =
∞∑
n=0

φ2n(x, y), (3.23)

where φ2n(x, y) denotes the nth propagating modes. To find φ2n(x, y) from the

boundary conditions of R2, we use method of separation of variables. For this, we

assume

φ2n(x, y) = X2n(x)Y2n(y). (3.24)

By using (3.24) into (3.8), we found

−
(
Y ′′2n
Y2n

+ 1

)
=
X ′′2n
X2n

= −ν2
n, (3.25)

which implies

X2n(x) = C5e
+iνnx + C6e

−iνnx (3.26)

and

Y2n(y) = C7 cos(γny) + C8 sin(γny), (3.27)

where νn =
√

1− γ2
n is the wave number of the propagating nth mode. On using

(3.27) into (3.11), we get the eigenfunction in R2 as:

Yn(y) = sin γn(y + b) + iξnγn cos γn(y + b), (3.28)
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where γn, n = 0, 1, 2, ... the eigen values are the roots of characteristic equation:

sin γn(2b) + 2iξnγn cos(2γnb) + ξ2
nγ

2
n sin(2γnb) = 0. (3.29)

These roots can be found numerically. Hence the reflected and transmitted field

in R2 can be written as:

φ2 (x, y) =
∞∑
n=0

{Bne
iνnx + Cne

−iνnx}Yn(y), (3.30)

where Bn and Cn, n = 0, 1, 2, ... are the amplitudes of nth transmitted and reflected

mode in R2, respectively. Likewise we obtain the eigenfunction expansion form in

region R3 as:

φ3(x, y) =
∞∑
n=0

Dn cos{nπ
2a

(y + a)}e+iηn(x−L), (3.31)

where coefficient Dn, n = 0, 1, 2, ... are the amplitude of nth transmitted duct

modes inR3. Note in (3.22), (3.30) and (3.31) the modal coefficient {An, Bn, Cn, Dn},

n = 0, 1, 2, ... are unknowns. To determine these unknowns we use the matching

procedure. Now it is convenient to match the pressures and normal velocities at

x = ±L. From the continuity of pressures, we have

φ1(−L, y) = φ2(−L, y), −a 6 y 6 a (3.32)

and

φ3(L, y) = φ2(L, y), − a 6 y 6 a. (3.33)

Using (3.22) and (3.30) into continuity condition of pressure (3.32), we obtain

1 +
∞∑
n=0

An cos{nπ
2a

(y + a)} =
∞∑
n=0

{Bne
−iνnL + Cne

iνnL}Yn(y). (3.34)



Scattering in Waveguide Involving Single Expansion Chamber 16

On multiplying (3.34) with cos{mπ
2a

(y+a)} and integrating with respect to y over

−a 6 y 6 a, we found

∫ a

−a
cos{mπ

2a
(y + a)}dy +

∞∑
n=0

An

∫ a

−a
cos{mπ

2a
(y + a)} cos{nπ

2a
(y + a)}dy

=
∞∑
n=0

{Bne
−iνnL + Cne

iνnL}
∫ a

−a
cos{mπ

2a
(y + a)}Yn(y)dy. (3.35)

As the eigen functions cos{mπ
2a

(y + a)}, m = 0, 1, 2,... are orthogonal in nature,

which satisfy the usual orthogonal relation

∫ a

−a
cos{mπ

2a
(y + a)} cos{nπ

2a
(y + a)}dy = aδmnεm, (3.36)

where δmn is the kronecker delta and

εm =

2, m = 0,

1, otherwise.

(3.37)

By using (3.36) and (3.37) into (3.35), we get

Am = −δm0 +
1

εma

∞∑
n=0

{Bne
−iνnL + Cne

iνnL}Rmn, (3.38)

where

Rmn =

∫ a

−a
cos{mπ

2a
(y + a)}Yn(y)dy. (3.39)

Also on using (3.30) and (3.31) into continuity condition of pressure (3.33), we

obtain
∞∑
n=0

Dn cos{nπ
2a

(y + a)} =
∞∑
n=0

{Bne
iνnL + Cne

−iνnL}Yn(y). (3.40)
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On multiplying (3.40) with cos{mπ
2a

(y + a)} and integrating with respect to y

over−a 6 y 6 a, we have

∞∑
n=0

Dn

∫ a

−a
cos{mπ

2a
(y + a)} cos{nπ

2a
(y + a)}dy =

∞∑
n=0

{Bne
iνnL + Cne

−iνnL}
∫ a

−a
cos{mπ

2a
(y + a)}Yn(y)dy. (3.41)

On substituting (3.36) and (3.37) into (3.41), we get

Dm =
1

aεm

∞∑
n=0

{Bne
−iνnL + Cne

iνnL}Rmn. (3.42)

By adding (3.38) and (3.42), we found

Ψ+
m = −δm0 +

2

εma

∞∑
n=0

L+
n cos(νnL)Rmn. (3.43)

And by subtracting (3.38) and (3.42), we have

Ψ−m = −δm0 −
2i

εma

∞∑
n=0

L−n sin(νnL)Rmn, (3.44)

where Ψ±m = (Am±Dm) and L±n = (Bn±Cn). Here we discuss the two categories

of the above problem.

3.2.1 Rigid Vertical Strips

For rigid vertical strips of the expansion chamber the continuity conditions of

normal velocities are defined by

φ2x (−L, y) =


0, − b 6 y 6 −a,

φ1x (−L, y) , −a 6 y 6 a,

0, a 6 y 6 b

(3.45)
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and

φ2x (L, y) =


0, − b 6 y 6 −a,

φ3x (L, y) , −a 6 y 6 a,

0, a 6 y 6 b.

(3.46)

On using (3.22) and (3.30) into the condition of normal velocity (3.45), we found

that

i

∞∑
n=0

{Bne
−iνnL − CneiνnL}νnYn(y) =

0, − b 6 y 6 −a,

i− i
∑∞

n=0 Anηn cos{nπ
2a

(y + a)}, −a 6 y 6 a,

0, a 6 y 6 b.

(3.47)

We multiply (3.47) by Ym(y) and then integrate with respect to y over −b 6 y 6 b,

we obtain

i
∞∑
n=0

{Bne
−iνnL − CneiνnL}νn

∫ b

−b
Ym(y)Yn(y)dy =

i

∫ a

−a
Ym(y)dy − i

∞∑
n=0

Anηn

∫ a

−a
Ym(y) cos{nπ

2a
(y + a)}dy. (3.48)

As the eigenfunctions Ym(y), m = 0, 1, 2,..., satisfy the dispersion relations

∫ b

−b
Yn(y)Ym(y)dy = Emδmn (3.49)

and

Em =

∫ b

−b
Y 2
m(y)dy. (3.50)

Using (3.49) and (3.50) into (3.48), we have

Bme
−iνmL − CmeiνmL =

R0m

Emνm
− 1

Emνm

∞∑
n=0

AnηnRnm. (3.51)
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Similarly, on using (3.30) and (3.31) into the condition of normal velocity (3.46),

we get

i

∞∑
n=0

{Bne
iνnL − Cne−iνnL}νnYn(y) =

0, − b 6 y 6 −a,

i
∑∞

n=0Dnηn cos{nπ
2a

(y + a)}, −a 6 y 6 a,

0, a 6 y 6 b.

(3.52)

By multiplying (3.52) by Ym(y) and then integrating with respect to y over −a 6

y 6 a, we obtain

i

∞∑
n=0

{Bne
iνnL − Cne−iνnL}νn

∫ a

−a
Ym(y)Yn(y)dy

= i
∞∑
n=0

Dnηn

∫ a

−a
Ym(y) cos{nπ

2a
(y + a)}dy. (3.53)

Using (3.49) and (3.50) into (3.53), we have

Bme
iνmL − Cme−iνmL =

1

Emνm

∞∑
n=0

DnηnRnm. (3.54)

Also adding (3.51) and (3.54), we get

L−m =
R0m

2 cos(νmL)Emνm
− 1

2 cos(νmL)Emνm

∞∑
n=0

Ψ−n ηnRnm. (3.55)

On subtracting (3.51) and (3.54), we found

L+
m =

−R0m

2i sin(νmL)Emνm
+

1

2i sin(νmL)Emνm

∞∑
n=0

Ψ+
n ηnRnm, (3.56)

where Ψ±n = (An ±Dn) and L±m = (Bm ± Cm).

In this way we get a system of equations defined by (3.43) and (3.56) with un-

knowns L+
m and Ψ+

m. Likewise a system for unknowns L−m and Ψ−m is given in (3.44)

and (3.55). These systems are truncated and solved numerically for L±m and Ψ±m.
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Then the model amplitudes {Am, Bm, Cm, Dm} are found from these values L±m

and Ψ±m as:

Am =
Ψ+
m + Ψ−m

2
, Dm =

Ψ+
m −Ψ−m

2
and

Bm =
L+
m + L−m

2
, Cm =

L+
m − L−m

2
.

3.2.2 Porous Linings along the Vertical Strips

This waveguide is extension of previous duct cavity system. In this waveguide, we

will discuss the expansion chamber with horizontal and vertical absorbing lining.

The governing boundary value problem for this waveguide is obtained by inserting

vertical absorbing lining in region R2. The geometrical configuration for porous

linings along the vertical strips is shown in Figure 3.2.

Figure 3.2: Geometry of the problem.

For porous linings along the vertical strips of the expansion chamber the continuity

conditions of normal velocities are defined by

φ2x (−L, y) =


φ1x (−L, y) , − a 6 y 6 a,

−i
ξ
φ2 (−L, y) , a 6 y 6 b,

−i
ξ
φ2 (−L, y) , − b 6 y 6 −a

(3.57)
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and

φ2x (L, y) =



i

ξ
φ2 (L, y) , a 6 y 6 b,

φ3x (L, y) , − a 6 y 6 a,

i

ξ
φ2 (L, y) , − b 6 y 6 −a.

(3.58)

Using (3.22) and (3.30) into the condition of normal velocity (3.57), we found that

i
∞∑
n=0

{Bne
−iνnL − CneiνnL}νnYn(y) =

i− i
∑∞

n=0Anηn cos{nπ
2a

(y + a)}, − a 6 y 6 a,

−i
ξ

∑∞
n=0{Bne

−iνnL + Cne
iνnL}Yn(y), a 6 y 6 b,

−i
ξ

∑∞
n=0{Bne

−iνnL + Cne
iνnL}Yn(y), −b 6 y 6 −a.

(3.59)

We multiply (3.59) by Ym(y) and then integrate with respect to y over −b 6 y 6 b

to achieve

i
∞∑
n=0

{Bne
−iνnL − CneiνnL}νn

∫ b

−b
Ym(y)Yn(y)dy

= i

∫ a

−a
Ym(y)dy − i

∞∑
n=0

Anηn

∫ a

−a
Ym(y) cos{nπ

2a
(y + a)}dy

− i
ξ

∞∑
n=0

{Bne
−iνnL + Cne

iνnL}
∫ b

a

Ym(y)Yn(y)dy

− i
ξ

∞∑
n=0

{Bne
−iνnL + Cne

iνnL}
∫ −a
−b

Ym(y)Yn(y)dy. (3.60)

On using (3.49) and (3.50) into (3.60), we get

Bme
−iνmL − CmeiνmL =

R0m

Emνm
− 1

Emνm

∞∑
n=0

AnηnRnm

− 1

Emνmξ

∞∑
n=0

{Bne
−iνnL + Cne

iνnL}Pmn

− 1

Emνmξ

∞∑
n=0

{Bne
−iνnL + Cne

iνnL}Qmn, (3.61)
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where

Pmn =

∫ b

a

Yn(y)Ym(y)dy (3.62)

and

Qmn =

∫ −a
−b

Yn(y)Ym(y)dy. (3.63)

By using (3.30) and (3.31) into the condition of normal velocity (3.58), we have

i

∞∑
n=0

{Bne
iνnL − Cne−iνnL}νnYn(y) =

i

ξ

∑∞
n=0{Bne

iνnL + Cne
−iνnL}Yn(y), a 6 y 6 b,

i
∑∞

n=0Dnηn cos{nπ
2a

(y + a)}, − a 6 y 6 a,

i

ξ

∑∞
n=0{Bne

iνnL + Cne
−iνnL}Yn(y), − b 6 y 6 −a.

(3.64)

By multiplying (3.62) by Ym(y) and then integrating with respect to y over −b 6

y 6 b, we obtain

i
∞∑
n=0

{Bne
iνnL − Cne−iνnL}νn

∫ b

−b
Ym(y)Yn(y)dy

=
i

ξ

∞∑
n=0

{Bne
iνnL + Cne

−iνnL}
∫ b

a

Ym(y)Yn(y)dy

+i
∞∑
n=0

Dnηn

∫ a

−a
Ym(y) cos{nπ

2a
(y + a)}dy

+
i

ξ

∞∑
n=0

{Bne
iνnL + Cne

−iνnL}
∫ −a
−b

Ym(y)Yn(y)dy. (3.65)

Using (3.49) and (3.50) into (3.65), we have

Bme
iνmL − Cme−iνmL =

1

Emνm

∞∑
n=0

DnηnRnm

+
1

Emνmξ

∞∑
n=0

{Bne
iνnL + Cne

−iνnL}Pmn

+
1

Emνmξ

∞∑
n=0

{Bne
iνnL + Cne

−iνnL}Qmn. (3.66)
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By adding (3.61) and (3.66), we found

L−m =
R0m

2 cos(νmL)Emνm
− 1

2 cos(νmL)Emνm

∞∑
n=0

Ψ−n ηnRnm

+
i

cos(νmL)Emνmξ

∞∑
n=0

L−n sin(νnL)Pmn

+
i

cos(νmL)Emνmξ

∞∑
n=0

L−n sin(νnL)Qmn. (3.67)

By subtracting (3.61) and (3.66), we obtain

L+
m = − R0m

2i sin(νmL)Emνm
+

1

2i sin(νmL)Emνm

∞∑
n=0

Ψ+
n ηnRnm

+
1

sin(νmL)Emνmξ

∞∑
n=0

L+
n cos(νnL)Pmn

+
1

sin(νmL)Emνmξ

∞∑
n=0

L+
n cos(νnL)Qmn. (3.68)

Similarly we find a system of equations defined by (3.43) and (3.68) with unknowns

L+
m and Ψ+

m. Also a system for unknowns L−m and Ψ−m is defined in (3.44) and (3.67).

These systems are truncated and solved numerically for L±m and Ψ±m. Then the

model coefficients {Am, Bm, Cm, Dm} are achieved from these values L±m and Ψ±m.

In the next section we calculate the propagation and scattering energy flux.

3.3 Energy Flux

Here using equation (2.10) the incident energy flux Pinc in region R1 is given by

Pinc =
1

2
Re

[
i

∫ a

−a
φinc

(
∂φinc
∂n

)?
dy

]
. (3.69)

Using the incident field φinc = ei(x+L) in the above equation, we have

Pinc =
1

2
Re

[
i

∫ a

−a
ei(x+L)(−ie−i(x+L))dy

]
. (3.70)
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Pinc = a. (3.71)

Similarly the reflected energy Pref in region R1 is found by using reflected field

potential φref (x, y) into (2.10), that gives

Pref =
1

2
Re

[
i

∫ a

−a
φref

(
∂φref
∂n

)?
dy

]
. (3.72)

Using (3.22) into (3.72), we get

Pref =
1

2
Re
[
−
∞∑
n=0

∞∑
m=0

AnA
?
mη

?
me
−i(x+L)(ηn−η?m)

∫ a

−a
cos
(mπ

2a
(y + a)

)
cos
(nπ

2a
(y + a)

)
dy
]
. (3.73)

Then by using the orthogonality relation (3.36) into (3.73), we obtain

Pref = −a
2
Re

[
∞∑
n=0

AnA
?
nη

?
ne
−i(x+L)(ηn−η?n)εn

]
,

where the wave number ηn , n = 0, 1, 2, ... is either real or imaginary, so for both

cases, real part of (3.73) is given by

Pref = −a
2
Re

[
∞∑
n=0

| An |2 εnηn

]
. (3.74)

The negative sign here denotes that the reflected energy propagates in opposite

direction to the incident energy. Similarly, the energy flux Ptr in region R3 can be

found by using transmitted field potential φtr in (3.31), we found

Ptr =
a

2
Re

[
∞∑
n=0

| Dn |2 εnηn

]
. (3.75)

Since energy is incident from region R1 and transmitted from region R3, then

energy flux can be written as:

Pinc + Pref = Ptr. (3.76)
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On using (3.71), (3.74) and (3.75) into (3.76), we get

a− a

2
Re

[
∞∑
n=0

| An |2 εnηn

]
=
a

2
Re

[
∞∑
n=0

| Dn |2 εnηn

]
. (3.77)

By dividing
2

a
on both sides, we found the desired result as:

1 = ζref + ζtr, (3.78)

where

ζref =
1

2
Re

[
∞∑
n=0

| An |2 εnηn

]
(3.79)

and

ζtr =
1

2
Re

[
∞∑
n=0

| Dn |2 εnηn

]
, (3.80)

where the incident power being scaled at unity. By using equation (3.80) and

incident energy flux that is unity, equation (2.11) yields the transmission loss as

TL = −10 log10 (ζtr) . (3.81)

3.4 Numerical Results and Discussion

Here the systems of equations achieved for rigid case (3.43)-(3.44) and (3.55)-

(3.56), where for vertical lining (3.43)-(3.44) and (3.67)-(3.68) are truncated by

n = m = 0, 1, 2, . . . , N terms. Then each system is solved separately for re-

spected unknowns. In this way we get the model coefficients {An, Bn, Cn, Dn},

n = 0, 1, 2..., N terms for rigid vertical case and vertical lining case separately.

The truncated solutions are used to reconstruct the matching conditions at in-

terfaces. For computation the speed of sound c = 343.5ms−1 and density of air

ρ = 1.2043kgm−3 remain fixed.

For fibrous and perforated sheets the value of absorbing materials varies as:

fibrous sheet: ξ = 0.5, − 1.0 < η < 3.0,

perforated sheet: 0 < ξ < 3.0, − 1.0 < η < 3.0.
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Likewise dimensional duct heights, frequency and terms are fixed at a∗ = 0.08m,

b∗ = 0.28m , f = 250Hz and N = 25.

For rigid vertical case the pressure and velocity graphs are shown in Figures 3.7-

3.10 and 3.3-3.6 respectively. It can be seen that the pressure and velocity curves

coincide. It confirms the reconstruction of matching conditions at interfaces as

assumed in equations (3.32)-(3.33) and (3.45)-(3.46).

Similarly for vertical absorbing lining case the pressure and velocity graphs are

shown in Figures 3.15-3.18 and 3.11-3.14 respectively. It can be seen that the

pressure and velocity curves coincide. It confirms the reconstruction of matching

conditions at interfaces as assumed in equations (3.32)-(3.33) and (3.57)-(3.58).

Moreover, in Figures 3.19-3.22 the transmission loss is plotted against frequency

to insight the problems physically. It is found that more transmission loss with

fibrous case than perforated case is obtained.
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Figure 3.3: The real parts of velocities for rigid vertical strips at -L.
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Figure 3.4: The imaginary parts of velocities for rigid vertical strips at -L.
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Figure 3.5: The real parts of velocities for rigid vertical strips at L.
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Figure 3.6: The imaginary parts of velocities for rigid vertical strips at L.
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Figure 3.7: The real parts of pressures for rigid vertical strips at -L.
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Figure 3.8: The imaginary parts of pressures for rigid vertical strips at -L.
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Figure 3.9: The real parts of pressures for rigid vertical strips at L.
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Figure 3.10: The imaginary parts of pressures for rigid vertical strips at L.
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Figure 3.11: The real parts of velocities for vertical absorbing lining at -L.
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Figure 3.12: The imaginary parts of velocities for vertical absorbing lining at
-L.
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Figure 3.13: The real parts of velocities for vertical absorbing lining at L.
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Figure 3.14: The imaginary parts of velocities for vertical absorbing lining at
L.
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Figure 3.15: The real parts of pressures for vertical absorbing lining at -L.
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Figure 3.16: The imaginary parts of pressures for vertical absorbing lining at
-L.
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Figure 3.17: The real parts of pressures for vertical absorbing lining at L.
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Figure 3.18: The imaginary parts of pressures for vertical absorbing lining at
L.
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Figure 3.19: Transmission loss against frequency for rigid vertical and absorb-
ing lining with ξ = 0.5 and η = 0.5.



Scattering in Waveguide Involving Single Expansion Chamber 35

0 100 200 300 400 500 600 700
0

2

4

6

8

10

12

14

(Hz)

T
L
-
dB

Vertically Rigid

Vertical lining

Figure 3.20: Transmission loss against frequency for rigid vertical and absorb-
ing lining with ξ = 1 and η = 0.5.
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Figure 3.21: Transmission loss against frequency for rigid vertical and absorb-
ing lining with ξ = 0.5 and η = 1.
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Figure 3.22: Transmission loss against frequency for rigid vertical and absorb-
ing lining with ξ = 1 and η = 1.



Chapter 4

Scattering in Waveguide

Involving Double Expansion

Chambers

In this chapter we study the propagation and scattering of sound waves in acoustic

waveguides involves double expansion chambers with absorbing lining. The gov-

erning boundary value problem is solved by using Mode Matching approach. The

section wise detail discussed comprehensively in the following. In section 4.1 the

mathematical formulation of the boundary value problem is given. In section 4.2

Mode Matching Solution of the boundary value problem are provided. In section

4.3 the derivation of energy flux is given. In section 4.4 the numerical results and

discussion are given.

4.1 Mathematical Formulation

This section is extension of previous chapter (3), that involves double expansion

chambers with absorbing lining. The horizontal boundaries of side regions at

y∗ = ±a∗ are rigid whereas the boundaries of central region contain absorbing lin-

ing. The vertical boundaries at x∗ = ±L∗ and x∗ = ±2L∗ can be of two different

37
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categories:

1) Acoustical rigid.

2) Absorbing lining.

The geometrical configuration of the problem is shown in Figure 4.1. With refer-

Figure 4.1: Geometry of the problem.

ence to different duct regions, this field potential can be written as:

φ (x, y) =



φ1 (x, y) , x < −2L, | y |< a,

φ2 (x, y) , | x |< −L, y < b,

φ3 (x, y) , x > −L, | y |< a,

φ4 (x, y) , | x |< L, y < b,

φ5 (x, y) , x > 2L, | y |< a.

(4.1)

The dimensionless form of boundary conditions can be written as:

∂φ1

∂y
= 0, x < −2L, y = ±a, (4.2)

φ2 ± iξ
∂φ2

∂y
= 0, | x |< −L, y = ±b, (4.3)

∂φ3

∂y
= 0, x < L, y = ±a, (4.4)
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φ4 ± iξ
∂φ4

∂y
= 0, | x |< 2L, y = ±b, (4.5)

∂φ5

∂y
= 0, x > 2L, y = ±a. (4.6)

The boundaries along the vertical strips can be rigid or absorbing lining. The rigid

vertical boundaries (shown in Figure 4.1) are

∂φ2

∂x
= 0, y = −2L, a 6 x 6 b,

∂φ2

∂x
= 0, y = −L, a 6 x 6 b (4.7)

and

∂φ4

∂x
= 0, y = L, a 6 x 6 b,

∂φ4

∂x
= 0, y = 2L, a 6 x 6 b. (4.8)

The vertical absorbing lining boundaries (shown in Figure 4.2) are given by,

φ2− iξ
∂φ2

∂x
= 0, y = −2L, a 6 x 6 b, φ2 + iξ

∂φ2

∂x
= 0, y = −L, a 6 x 6 b

(4.9)

and

φ4 − iξ
∂φ4

∂x
= 0, y = L, a 6 x 6 b, φ4 + iξ

∂φ4

∂x
= 0, y = 2L, a 6 x 6 b.

(4.10)

Now the boundary value problem is solved by using Mode-Matching technique.

4.2 Mode Matching Solution

Here we find the Mode Matching solution of the boundary value problem formu-

lated in section 4.1. Consider a plane wave incident φinc which is fundamental

duct mode of region x < −2L is propagating from negative x-direction towards

| x |6 2L, where it will scatter into the infinite number of reflected and transmit-

ted modes.
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The eigenfunction expansions forms for all duct regions are defined as:

φ1 (x, y) = ei(x+2L) +
∞∑
n=0

An cos{nπ
2a

(y + a)}e−iηn(x+2L), (4.11)

φ2 (x, y) =
∞∑
n=0

{Bne
iνn(x+L) + Cne

−iνn(x+L)}Yn(y), (4.12)

φ3 (x, y) =
∞∑
n=0

{Dne
iηnx + Ene

−iηnx} cos{nπ
2a

(y + a)}, (4.13)

φ4 (x, y) =
∞∑
n=0

{Fneiνn(x−L) +Gne
−iνn(x−L)}Yn(y), (4.14)

and

φ5(x, y) =
∞∑
n=0

Hn cos{nπ
2a

(y + a)}e+iηn(x−2L), (4.15)

where ηn =
√

1− τ 2
n, n = 0, 1, 2, . . . are the wave number of propagating modes

in regions R1, R3 and R5, where τn = nπ/2a, n = 0, 1, 2, .... Also νn =
√

1− γ2
n

is the wave number of the propagating nth mode. On using (4.3) and (4.5) into

(3.27), we get the eigenfunctions in R2 and R4 as:

Yn(y) = sin γn(y + b) + iξnγn cos γn(y + b), (4.16)

where γn, n = 0, 1, 2, ... the eigen values are the roots of characteristic equation:

sin γn(2b) + 2iξnγn cos(2γnb) + ξ2
nγ

2
n sin(2γnb) = 0. (4.17)

These roots can be obtained numerically. Here the coefficient {An, Cn, En, Gn},

n = 0, 1, 2, ... are the amplitudes of nth reflected duct modes and the coefficient

{Bn, Dn, Fn, Hn}, n = 0, 1, 2, ... are the amplitudes of nth transmitted duct modes.

Note that these modal coefficients are unknowns. To determine these unknowns

we use the matching procedure.

First we match the pressures across the regions at interfaces x = ±L , x = ±2L.

The continuity conditions of pressures are defined by

φ1(−2L, y) = φ2(−2L, y), −a 6 y 6 a, (4.18)
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φ3(−L, y) = φ2(−L, y), − a 6 y 6 a, (4.19)

φ3(L, y) = φ4(L, y), − a 6 y 6 a (4.20)

and

φ5(2L, y) = φ4(2L, y), − a 6 y 6 a. (4.21)

On using (4.11) and (4.12) into continuity condition of pressure (4.18), we found

1 +
∞∑
n=0

An cos{nπ
2a

(y + a)} =
∞∑
n=0

{Bne
−iνnL + Cne

iνnL}Yn(y). (4.22)

On multiplying (4.22) with cos{mπ
2a

(y+a)} and integrating with respect to y over

−a 6 y 6 a, we obtain

∫ a

−a
cos{mπ

2a
(y + a)}dy +

∞∑
n=0

An

∫ a

−a
cos{mπ

2a
(y + a)} cos{nπ

2a
(y + a)}dy

=
∞∑
n=0

{Bne
−iνnL + Cne

iνnL}
∫ a

−a
cos{mπ

2a
(y + a)}Yn(y)dy. (4.23)

On using (3.36) and (3.37) into (4.23), we get

Am = −δm0 +
1

εma

∞∑
n=0

{Bne
−iνnL + Cne

iνnL}Rmn. (4.24)

By using (4.12) and (4.13) into continuity condition of pressure (4.19), we obtain

∞∑
n=0

{Dne
−iηnL + Ene

iηnL} cos{nπ
2a

(y + a)} =
∞∑
n=0

{Bn + Cn}Yn(y). (4.25)

On multiplying (4.25) with cos{mπ
2a

(y+a)} and integrating with respect to y over

−a 6 y 6 a, we have

∞∑
n=0

{Dne
−iηnL + Ene

iηnL}
∫ a

−a
cos{mπ

2a
(y + a)} cos{nπ

2a
(y + a)}dy

=
∞∑
n=0

{Bn + Cn}
∫ a

−a
cos{mπ

2a
(y + a)}Yn(y)dy. (4.26)
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Using (3.36) and (3.37) into (4.26), we found

Dme
−iηmL + Eme

iηmL =
1

aεm

∞∑
n=0

{Bn + Cn}Rmn. (4.27)

By using (4.13) and (4.14) into continuity condition of pressure (4.20), we get

∞∑
n=0

{Dne
iηnL + Ene

−iηnL} cos{nπ
2a

(y + a)} =
∞∑
n=0

{Fn +Gn}Yn(y). (4.28)

On multiplying (4.28) with cos{mπ
2a

(y+a)} and integrating with respect to y over

−a 6 y 6 a, we found

∞∑
n=0

{Dne
iηnL + Ene

−iηnL}
∫ a

−a
cos{mπ

2a
(y + a)} cos{nπ

2a
(y + a)}dy

=
∞∑
n=0

{Fn +Gn}
∫ a

−a
cos{mπ

2a
(y + a)}Yn(y)dy. (4.29)

Using (3.36) and (3.37) into (4.29), we found that

Dme
iηmL + Eme

−iηmL =
1

aεm

∞∑
n=0

{Fn +Gn}Rmn. (4.30)

Also using (4.14) and (4.15) into continuity condition of pressure (4.21), we obtain

∞∑
n=0

Hn cos{nπ
2a

(y + a)} =
∞∑
n=0

{FneiνnL +Gne
−iνnL}Yn(y). (4.31)

By multiplying (4.31) with cos{mπ
2a

(y+a)} and integrating with respect to y over

−a 6 y 6 a, we have

∞∑
n=0

Hn

∫ a

−a
cos{mπ

2a
(y + a)} cos{nπ

2a
(y + a)}dy =

∞∑
n=0

{FneiνnL +Gne
−iνnL}

∫ a

−a
cos{mπ

2a
(y + a)}Yn(y)dy. (4.32)
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Using (3.36) and (3.37) into (4.32), we found

Hm =
1

εma

∞∑
n=0

{FneiνnL +Gne
−iνnL}Rmn. (4.33)

By adding (4.24) and (4.33), it is found that

U+
m = −δm0 +

1

εma

∞∑
n=0

{V +
n e
−iνnL +W+

n e
iνnL}Rmn (4.34)

And subtracting (4.24) and (4.33), we obtain,

U−m = −δm0 +
1

εma

∞∑
n=0

{V −n e−iνnL −W−
n e

iνnL}Rmn, (4.35)

where U±m = (Am ± Hm) and V ±n = (Bn ± Gn) and W±
n = (Fn ± Cn). Likewise

adding (4.27) and (4.30), we have

Z+
m =

1

2a cos(ηmL)εm

∞∑
n=0

{V +
n +W+

n }Rmn. (4.36)

Similarly subtracting (4.27) and (4.30), we get

Z−m =
−1

2ai sin(ηmL)εm

∞∑
n=0

{V −n −W−
n }Rmn, (4.37)

where Z±m = (Dm ± Em) and Z±n = (Dn ± En). Now we apply the continuity

conditions of normal velocities. Two cases are considered herein depending upon

the properties of vertical strips, that are

1) Rigid vertical strips.

2) Porous linings along the vertical strips.
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4.2.1 Rigid Vertical Strips

For this case the continuity conditions of normal velocities are defined by,

φ2x (−2L, y) =


0, − b 6 y 6 −a,

φ1x (−2L, y) , −a 6 y 6 a,

0, a 6 y 6 b,

(4.38)

φ2x (−L, y) =


0, − b 6 y 6 −a,

φ3x (−L, y) , −a 6 y 6 a,

0, a 6 y 6 b,

(4.39)

φ4x (L, y) =


0, − b 6 y 6 −a,

φ3x (L, y) , −a 6 y 6 a,

0, a 6 y 6 b

(4.40)

and

φ4x (2L, y) =


0, − b 6 y 6 −a,

φ5x (2L, y) , −a 6 y 6 a,

0, a 6 y 6 b.

(4.41)

On using (4.11) and (4.12) into the condition of normal velocity (4.38), we found

that

i

∞∑
n=0

{Bne
−iνnL − CneiνnL}νnYn(y) =

0, − b 6 y 6 −a,

i− i
∑∞

n=0Anηn cos{nπ
2a

(y + a)}, −a 6 y 6 a,

0, a 6 y 6 b.

(4.42)
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We multiply (4.42) by Ym(y) and integrate with respect to y over −b 6 y 6 b, we

obtain

i

∞∑
n=0

{Bne
−iνnL − CneiνnL}νn

∫ b

−b
Ym(y)Yn(y)dy =

i

∫ a

−a
Ym(y)dy − i

∞∑
n=0

Anηn

∫ a

−a
cos{nπ

2a
(y + a)}Ym(y)dy. (4.43)

Using (3.49) and (3.50) into (4.43), we have

Bme
−iνmL − CmeiνmL =

R0m

Emνm
− 1

Emνm

∞∑
n=0

AnηnRnm. (4.44)

By using (4.12) and (4.13) into condition of normal velocity (4.39), we found

i
∞∑
n=0

{Bn − Cn}νnYn(y) = i
∞∑
n=0

{Dne
−iηnL − EneiηnL}ηn cos{nπ

2a
(y + a)}. (4.45)

On multiplying (4.45) by Ym(y) and integrating with respect to y over −b 6 y 6 b,

we obtain

i
∞∑
n=0

{Bn − Cn}
∫ b

−b
Yn(y)Ym(y)dy =

i
∞∑
n=0

{Dne
−iηnL − EneiηnL}ηn

∫ a

−a
Ym(y) cos{nπ

2a
(y + a)}Ym(y)dy. (4.46)

Using (3.49) and (3.50) into (4.46), we found that

Bm − Cm =
1

Emνm

∞∑
n=0

{Dne
−iηnL − EneiηnL}ηnRnm. (4.47)

On using (4.13) and (4.14) into condition of normal velocity (4.40), we obtain

i

∞∑
n=0

{Fn −Gn}νnYn(y) = i

∞∑
n=0

{Dne
iηnL − Ene−iηnL}ηn cos{nπ

2a
(y + a)}. (4.48)
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We multiply (4.48) by Ym(y) and integrate with respect to y over −b 6 y 6 b, we

have

i

∞∑
n=0

{Fn −Gn}
∫ b

−b
Yn(y)Ym(y)dy =

i
∞∑
n=0

{Dne
iηnL − Ene−iηnL}ηn

∫ a

−a
cos{nπ

2a
(y + a)}Ym(y)dy. (4.49)

Using (3.49) and (3.50) into (4.49), we get

Fm −Gm =
1

Emνm

∞∑
n=0

{Dne
iηnL − Ene−iηnL}ηnRnm. (4.50)

On using (4.14) and (4.15) into condition of normal velocity (4.41), we obtain

i
∞∑
n=0

{FneiνnL −Gne
−iνnL}νnYn(y) = i

∞∑
n=0

Hnηn cos{nπ
2a

(y + a)}. (4.51)

By multiplying (4.51) by Ym(y) and integrating with respect to y over −b 6 y 6 b,

we found

i
∞∑
n=0

{FneiνnL −Gne
−iνnL}

∫ b

−b
Yn(y)Ym(y)dy =

i
∞∑
n=0

Hnηn

∫ a

−a
cos{nπ

2a
(y + a)}Ym(y)dy. (4.52)

On using (3.49) and (3.50) into (4.52), we have

Fme
iνmL −Gme

−iνmL =
1

Emνm

∞∑
n=0

HnηnRnm. (4.53)

By subtracting (4.44) and (4.53), we obtain

V +
m e
−iνmL −W+

me
iνmL =

R0m

Emνm
− 1

Emνm

∞∑
n=0

U+
n ηnRnm. (4.54)
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On adding (4.44) and (4.53), we have

V −m e
−iνmL +W−

me
iνmL =

R0m

Emνm
− 1

Emνm

∞∑
n=0

U−n ηnRnm. (4.55)

Similarly subtracting (4.47) and (4.50), we found

V +
m −W+

m =
−2i

Emνm

∞∑
n=0

Z+
n sin(ηnL)ηnRnm. (4.56)

By adding (4.47) and (4.50), we get

V −m +W−
m =

2

Emνm

∞∑
n=0

Z−n cos(ηnL)ηnRnm. (4.57)

Thus we get a system of equations defined by (4.34) and (4.36), (4.54) and (4.56)

with unknowns U+
m, Z+

m, V +
m and W+

m . Also a system for unknowns U−m, Z−m,

V −m and W−
m is given in (4.35) and (4.37), (4.55) and (4.57). These systems are

truncated and solved numerically for U±m, Z±m, V ±m and W±
m . Then the model

coefficients {Am, Bm, Cm, Dm, Em, Fm, Gm, Hm} are found from these values U±m,

Z±m, V ±m and W±
m as:

Am =
U+
m + U−m

2
, Hm =

U+
m − U−m

2
,

Bm =
V +
m + V −m

2
, Gm =

V +
m − V −m

2
,

Fm =
W+
m +W−

m

2
, Cm =

W+
m −W−

m

2
,

and

Dm =
Z+
m + Z−m

2
, Em =

Z+
m − Z−m

2
.

4.2.2 Porous Linings along the Vertical Strips

In this subsection we study the propagation and scattering of acoustic waves in an

acoustic waveguide which inserted double expansion chambers including absorbing

lining. The geometrical configuration of the problem is shown in Figure 4.2. The

present problem involving vertical absorbing lining in expansion chambers just

effect the normal velocities of the waveguide. Here, we defined normal velocities
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Figure 4.2: Geometry of the problem.

at x = ±L and x = ±2L.

The continuity conditions of normal velocities for this case are defined by,

φ2x (−2L, y) =


φ1x (−2L, y) , − a 6 y 6 a,

−i
ξ
φ2 (−2L, y) , a 6 y 6 b,

−i
ξ
φ2 (−2L, y) , − b 6 y 6 −a

(4.58)

φ2x (−L, y) =



i

ξ
φ2 (−L, y) , a 6 y 6 b,

φ3x (−L, y) , − a 6 y 6 a,

i

ξ
φ2 (−L, y) , − b 6 y 6 −a,

(4.59)

φ4x (L, y) =


φ3x (L, y) , − a 6 y 6 a,

−i
ξ
φ4 (L, y) , a 6 y 6 b,

−i
ξ
φ4 (L, y) , −b 6 y 6 −a

(4.60)
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and

φ4x (2L, y) =



i

ξ
φ4 (2L, y) , a 6 y 6 b,

φ5x (2L, y) , − a 6 y 6 a,

i

ξ
φ4 (2L, y) , −b 6 y 6 −a.

(4.61)

On using (4.11) and (4.12) into the condition of normal velocity (4.58), we obtain

i
∞∑
n=0

{Bne
−iνnL − CneiνnL}νnYn(y) =

i− i
∑∞

n=0 Anηn cos{nπ
2a

(y + a)}, − a 6 y 6 a,

−i
ξ

∑∞
n=0{Bne

−iνnL + Cne
iνnL}Yn(y), a 6 y 6 b,

−i
ξ

∑∞
n=0{Bne

−iνnL + Cne
iνnL}Yn(y), −b 6 y 6 −a.

(4.62)

We multiply (4.62) by Ym(y) and integrate with respect to y over −b 6 y 6 b, we

found that

i
∞∑
n=0

{Bne
−iνnL − CneiνnL}νn

∫ b

−b
Ym(y)Yn(y)dy =

i

∫ a

−a
Ym(y)dy − i

∞∑
n=0

Anηn

∫ a

−a
cos{nπ

2a
(y + a)}Ym(y)dy

− i
ξ

∞∑
n=0

{Bne
−iνnL + Cne

iνnL}
∫ b

a

Yn(y)Ym(y)dy

− i
ξ

∞∑
n=0

{Bne
−iνnL + Cne

iνnL}
∫ −a
−b

Yn(y)Ym(y)dy. (4.63)

On using (3.49) and (3.50) into (4.63), we have

Bme
−iνmL − CmeiνmL =

R0m

Emνm
− 1

Emνm

∞∑
n=0

AnηnRnm −

1

Emνmξ

∞∑
n=0

{Bne
−iνnL + Cne

iνnL}Pmn −
1

Emνmξ

∞∑
n=0

{Bne
−iνnL + Cne

iνnL}Qmn.

(4.64)
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By using (4.12) and (4.13) into the condition of normal velocity (4.59), we get

i

∞∑
n=0

{Bn − Cn}νnYn(y) =

i

ξ

∑∞
n=0{Bn + Cn}Yn(y), a 6 y 6 b,

i
∑∞

n=0{Dne
−iηnL − EneiηnL}ηn cos{nπ

2a
(y + a)}, −a 6 y 6 a,

i

ξ

∑∞
n=0{Bn + Cn}Yn(y), − b 6 y 6 −a.

(4.65)

By multiplying (4.65) with Ym(y) and integrating with respect to y over −b 6 y 6

b, we obtain

i

∞∑
n=0

{Bn − Cn}νn
∫ b

−b
Ym(y)Yn(y)dy

= +
i

ξ

∞∑
n=0

{Bn + Cn}
∫ b

a

Ym(y)Yn(y)dy +

i
∞∑
n=0

{Dne
−iηnL − EneiηnL}ηn

∫ a

−a
Ym(y) cos{nπ

2a
(y + a)}dy

+
i

ξ

∞∑
n=0

{Bn + Cn}
∫ −a
−b

Ym(y)Yn(y)dy. (4.66)

On using (3.49) and (3.50) into (4.66), we get

Bm − Cm =
1

Emνm

∞∑
n=0

{Dne
−iηnL − EneiηnL}ηnRnm

+
1

Emνmξ

∞∑
n=0

{Bn + Cn}Pmn +
1

Emνmξ

∞∑
n=0

{Bn + Cn}Qmn. (4.67)
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On using (4.13) and (4.14) into the condition of normal velocity (4.60), we found

that

i

∞∑
n=0

{Fn −Gn}νnYn(y) =

−i
ξ

∑∞
n=0{Fn +Gn}Yn(y), a 6 y 6 b,

i
∑∞

n=0{Dne
iηnL − Ene−iηnL}ηn cos{nπ

2a
(y + a)}, −a 6 y 6 a,

−i
ξ

∑∞
n=0{Fn +Gn}Yn(y), − b 6 y 6 −a.

(4.68)

Now we multiply (4.68) by Ym(y) and integrate with respect to y over −b 6 y 6 b

to get

i
∞∑
n=0

{Fn −Gn}νn
∫ b

−b
Ym(y)Yn(y)dy

=
−i
ξ

∞∑
n=0

{Fn +Gn}
∫ b

a

Ym(y)Yn(y)dy +

i
∞∑
n=0

{Dne
iηnL − Ene−iηnL}ηn

∫ a

−a
Ym(y) cos{nπ

2a
(y + a)}dy

− i
ξ

∞∑
n=0

{Fn +Gn}
∫ −a
−b

Ym(y)Yn(y)dy. (4.69)

On using (3.49) and (3.50) into (4.69), we obtain

Fm −Gm =
1

Emνm

∞∑
n=0

{Dne
iηnL − Ene−iηnL}ηnRnm −

1

Emνmξ

∞∑
n=0

{Fn +Gn}Pmn −
1

Emνmξ

∞∑
n=0

{Fn +Gn}Qmn. (4.70)



Scattering in Waveguide Involving Double Expansion Chambers 52

By using (4.14) and (4.15) into the condition of normal velocity (4.61), we found

that

i

∞∑
n=0

{FneiνnL −Gne
−iνnL}νnYn(y) =

i

ξ

∑∞
n=0{FneiνnL +Gne

−iνnL}Yn(y), a 6 y 6 b,

+i
∑∞

n=0Hnηn cos{nπ
2a

(y + a)}, − a 6 y 6 a,

i

ξ

∑∞
n=0{FneiνnL +Gne

−iνnL}Yn(y), − b 6 y 6 −a.

(4.71)

By multiplying (4.71) with Ym(y) and integrating with respect to y over −b 6 y 6

b, we get

i
∞∑
n=0

{FneiνnL −Gne
−iνnL}νn

∫ b

−b
Ym(y)Yn(y)dy

=
i

ξ

∞∑
n=0

{FneiνnL +Gne
−iνnL}

∫ b

a

Ym(y)Yn(y)dy

+i
∞∑
n=0

Hnηn

∫ a

−a
Ym(y) cos{nπ

2a
(y + a)}dy

+
i

ξ

∞∑
n=0

{FneiνnL +Gne
−iνnL}

∫ −a
−b

Ym(y)Yn(y)dy. (4.72)

On using (3.49) and (3.50) into (4.72), we obtain

Fme
iνmL −Gme

−iνmL =
1

Emνmξ

∞∑
n=0

{FneiνnL +Gne
−iνnL}Pmn

+
1

Emνm

∞∑
n=0

HnηnRnm +
1

Emνmξ

∞∑
n=0

{FneiνnL +Gne
−iνnL}Qmn. (4.73)

By subtracting (4.64) and (4.73), we found

V +
m e
−iνmL −W+

me
iνmL =

R0m

Emνm
− 1

Emνm

∞∑
n=0

U+
n ηnRnm

− 1

Emνmξ

∞∑
n=0

{V +
n e
−iνnL +W+

n e
iνnL}{Pmn +Qmn}. (4.74)
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On adding (4.64) and (4.73), we have

V −m e
−iνmL +W−

me
iνmL =

R0m

Emνm
− 1

Emνm

∞∑
n=0

U−n ηnRnm

− 1

Emνmξ

∞∑
n=0

{V −n e−iνnL −W−
n e

iνnL}{Pmn +Qmn}. (4.75)

Similarly by subtracting (4.67) and (4.70), we get

V +
m −W+

m =
1

Emνmξ

∞∑
n=0

{V +
n +W+

n }{Pmn +Qmn}−
2i

Emνm

∞∑
n=0

Z+
n sin(ηnL)ηnRnm.

(4.76)

By adding (4.67) and (4.70), we obtain

V −m +W−
m =

1

Emνmξ

∞∑
n=0

{V −n −W−
n }{Pmn+Qmn}+

2

Emνm

∞∑
n=0

Z−n cos(ηnL)ηnRnm,

(4.77)

where V ±m = (Bm ±Gm) and W±
m = (Fm ± Cm).

In the same way we get a system of equations defined by (4.34) and (4.36), (4.74)

and (4.76) with unknowns U+
m, Z+

m, V +
m and W+

m . Also a system for unknowns

U−m, Z−m, V −m and W−
m is given in (4.35) and (4.37), (4.75) and (4.77). These

systems are truncated and solved numerically for U±m, Z±m, V ±m and W±
m . Then

the model amplitudes {Am, Bm, Cm, Dm, Em, Fm, Gm, Hm} are obtained from these

values U±m, Z±m, V ±m and W±
m .

In the next section we discuss the propagation and scattering energy flux.

4.3 Energy Flux

In this section we study about the energy flux of waveguides. As the incident

and transmitted regions of chapter 3 and chapter 4 are of same shape. Thus the

incoming power in R1 and outgoing power in R5 are written as:

ζref =
1

2
Re

[
∞∑
n=0

| An |2 εnηn

]
(4.78)
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and

ζtr =
1

2
Re

[
∞∑
n=0

| Hn |2 εnηn

]
, (4.79)

where the incident power being scaled at unity. By using (4.79) and incident

energy flux that is unity, equation (2.11) yields the transmission loss as

TL = −10 log10 (ζtr) . (4.80)

4.4 Numerical Results and Discussion

In this section, the systems of equations achieved for rigid case (4.34)-(4.37) and

(4.54)-(4.57), where for vertical lining (4.34)-(4.37) and (4.74)-(4.77) are truncated

by n = m = 0, 1, 2, . . . , N terms. Then each system is solved separately for re-

spected unknowns. Thus we get the model coefficients {An, Bn, Cn, Dn, En, Fn, Gn

, Hn}, n = 0, 1, 2..., N terms for rigid case and vertical lining case separately. The

truncated solutions are used to reconstruct the matching conditions at interfaces.

All the physical parameters of previous chapter are used.

Here for rigid vertical case the pressure and velocity graphs are shown in Figures

4.11-4.18 and 4.3-4.10 respectively. It can be seen that the pressure and velocity

curves coincide. It confirms the reconstruction of matching conditions at interfaces

as assumed in equations (4.18)-(4.21) and (4.38)-(4.41).

Likewise for vertical absorbing lining case the pressure and velocity graphs are

shown in Figures 4.19-4.26 and 4.27-4.34 respectively. It can be seen that the

pressure and velocity curves coincide. It confirms the reconstruction of matching

conditions at interfaces as assumed in equations (4.18)-(4.21) and (4.58)-(4.61).

Furthermore, to insight the problems physically the transmission loss is plotted

against frequency in Figures 4.35-4.38. It is noted that more transmission loss

with fibrous case than perforated case is obtained.
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Figure 4.3: The real parts of velocities for rigid vertical strips at -2L.
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Figure 4.4: The imaginary parts of velocities for rigid vertical strips at -2L.
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Figure 4.5: The real parts of velocities for rigid vertical strips at -L.
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Figure 4.6: The imaginary parts of velocities for rigid vertical strips at -L.
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Figure 4.7: The real parts of velocities for rigid vertical strips at L.
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Figure 4.8: The imaginary parts of velocities for rigid vertical strips at L.
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Figure 4.9: The real parts of velocities for rigid vertical strips at 2L.
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Figure 4.10: The imaginary parts of velocities for rigid vertical strips at 2L.
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Figure 4.11: The real parts of pressures for rigid vertical strips at -2L.
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Figure 4.12: The imaginary parts of pressures for rigid vertical strips at -2L.
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Figure 4.13: The real parts of pressures for rigid vertical strips at -L.

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

-0.13

-0.12

-0.11

-0.10

-0.09

-0.08

-0.07

y

Im
ag
in
ar
y(
ϕ
j)

ϕ3

ϕ2

Figure 4.14: The imaginary parts of pressures for rigid vertical strips at -L.
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Figure 4.15: The real parts of pressures for rigid vertical strips at L.
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Figure 4.16: The imaginary parts of pressures for rigid vertical strips at L.
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Figure 4.17: The real parts of pressures for rigid vertical strips at 2L.
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Figure 4.18: The imaginary parts of pressures for rigid vertical strips at 2L.
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Figure 4.19: The real parts of velocities for vertical absorbing lining at -2L.
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Figure 4.20: The imaginary parts of velocities for vertical absorbing lining at
-2L.
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Figure 4.21: The real parts of velocities for vertical absorbing lining at -L.
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Figure 4.22: The imaginary parts of velocities for vertical absorbing lining at
-L.
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Figure 4.23: The real parts of velocities for vertical absorbing lining at L.
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Figure 4.24: The imaginary parts of velocities for vertical absorbing lining at
L.
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Figure 4.25: The real parts of velocities for vertical absorbing lining at 2L.
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Figure 4.26: The imaginary parts of velocities for vertical absorbing lining at
2L.
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Figure 4.27: The real parts of pressures for vertical absorbing lining at -2L.
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Figure 4.28: The imaginary parts of pressures for vertical absorbing lining at
-2L.
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Figure 4.29: The real parts of pressures for vertical absorbing lining at -L.
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Figure 4.30: The imaginary parts of pressures for vertical absorbing lining at
-L.



Scattering in Waveguide Involving Double Expansion Chambers 69

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
0.14

0.15

0.16

0.17

0.18

0.19

0.20

y

R
ea
l[ϕ

jx
]

ϕ4

ϕ3

Figure 4.31: The real parts of pressures for vertical absorbing lining at L.
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Figure 4.32: The imaginary parts of pressures for vertical absorbing lining at
L.
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Figure 4.33: The real parts of pressures for vertical absorbing lining at 2L.

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

0.1292

0.1294

0.1296

0.1298

0.1300

0.1302

0.1304

y

Im
ag
in
ar
y(
ϕ
jx
)

ϕ5

ϕ4

Figure 4.34: The imaginary parts of pressures for vertical absorbing lining at
2L.



Scattering in Waveguide Involving Double Expansion Chambers 71

0 100 200 300 400 500 600 700
0

5

10

15

20

25

30

(Hz)

T
L
-
dB

Vertically Rigid

Vertical lining

Figure 4.35: Transmission loss against frequency for rigid vertical and absorb-
ing lining with ξ = 0.5 and η = 0.5.
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Figure 4.36: Transmission loss against frequency for rigid vertical and absorb-
ing lining with ξ = 1 and η = 0.5.
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Figure 4.37: Transmission loss against frequency for rigid vertical and absorb-
ing lining with ξ = 0.5 and η = 1.

0 100 200 300 400 500 600 700
0

5

10

15

20

25

(Hz)

T
L
-
dB

Vertically Rigid

Vertical lining

Figure 4.38: Transmission loss against frequency for rigid vertical and absorb-
ing lining with ξ = 1 and η = 1.



Chapter 5

Discussion and Conclusion

In this thesis, we have investigated the acoustic wave scattering in waveguides

including single and double expansion chambers. The inside properties of the

chambers are varied. Two physical problems have been discussed in the thesis.

All the problems are governed by Helmholtz equation along with rigid and/or

impedance type boundary conditions. The Mode Matching technique has been

applied to solve the governing boundary value problems.

The thesis contains five chapters in which Chapter 1 and Chapter 2 include intro-

duction and basic terminologies regarding the work of Chapter 3 and Chapter 4.

In Chapter 3, the attenuation with single expansion chamber is studied. The hor-

izontal boundaries of the chamber are lined with porous material. However, for

the vertical walls of the chamber two cases are considered.

In first case the boundary value problem is solved with rigid vertical walls of the

chamber whilst in later case the rigid vertical walls are replaced with absorbing

lining.

In Chapter 4, the attenuation performance with two expansion chambers is dis-

cussed. Again the governing boundary value problems are splitted into two cases.

First case include the two horizontally lined chambers with rigid vertical walls of

the chambers whilst in the second case the rigid vertical walls are replaced with

absorbing linings. The Mode Matching solution of the problems is explained in

73
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Chapter 3 and Chapter 4. For each case the eigenfunction expansion form of so-

lution is obtained. To discuss the problem physically the truncated form is used.

First matching conditions are reconstructed to confirm the accuracy of formed

truncated solutions. From the matching of pressures and velocities curves at in-

terfaces, the truncated solution has been verified for each case.

Then the transmission loss are plotted against frequency to insight the problems

physically. It is found that more transmission loss with fully lined cases than rigid

vertical cases is obtained for single as well as double expansion chambers. Further-

more the properties of linings are changed. It is noted that more transmission loss

with fibrous case than perforated case is obtained. Thus more attenuation perfor-

mance with fibrous case and for double lined expansion chambers is observed.
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